Pages

Wednesday, January 13, 2016

Educational Technology

                              Educational Technology

Educational technology is the effective use of technological tools in learning. As a concept, it concerns an array of tools, such as media, machines and networking hardware, as well as considering underlying theoretical perspectives for their effective application. Educational technology is not restricted to high technology. Nonetheless, electronic educational technology, also called e-learning, has become an important part of society today, comprising an extensive array of digitization approaches, components and delivery methods. For example, m-learning emphasizes mobility, but is otherwise indistinguishable in principle from educational technology. Educational technology includes numerous types of media that deliver text, audio, images, animation, and streaming video, and includes technology applications and processes such as audio or video tape, satellite TV, CD-ROM, and computer-based learning, as well as local intranet/extranet and web-based learning. Information and communication systems, whether free-standing or based on either local networks or the Internet in networked learning, underlie many e-learning processes. Theoretical perspectives and scientific testing influence instructional design. The application of theories of human behavior to educational technology derives input from instructional theory, learning theory, educational psychology, media psychology and human performance technology. Educational technology and e-learning can occur in or out of the classroom. It can be self-paced, asynchronous learning or may be instructor-led, synchronous learning. It is suited to distance learning and in conjunction with face-to-face teaching, which is termed blended learning. Educational technology is used by learners and educators in homes, schools (both K-12 and higher education), businesses, and other settings.

Definition
Richey defined educational technology as "the study and ethical practice of facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources". The Association for Educational Communications and Technology (AECT) denoted instructional technology as "the theory and practice of design, development, utilization, management, and evaluation of processes and resources for learning."  As such, educational technology refers to all valid and reliable applied education sciences, such as equipment, as well as processes and procedures that are derived from scientific research, and in a given context may refer to theoretical, algorithmic or heuristic processes: it does not necessarily imply physical technology.

Scope
Educational technology refers to the use of both physical hardware and educational theoretics. It encompasses several domains, including learning theory, computer-based training, online learning and, where mobile technologies are used, m-learning. Accordingly, there are several discrete aspects to describing the intellectual and technical development of educational technology:

educational technology as the theory and practice of educational approaches to learning
educational technology as technological tools and media that assist in the communication of knowledge, and its development and exchange
educational technology for learning management systems (LMS), such as tools for student and curriculum management, and education management information systems (EMIS)
educational technology itself as an educational subject; such courses may be called "Computer Studies" or "Information and Communication Technology (ICT)"
Related terms

Early 20th century abacus used in a Danish elementary school.
Educational technology is an inclusive term for the tools and the theoretical foundations for supporting learning and teaching. Educational technology is not restricted to high technology.
However, modern electronic educational technology is an important part of society today. Educational technology encompasses e-learning, instructional technology, information and communication technology (ICT) in education, EdTech, learning technology, multimedia learning, technology-enhanced learning (TEL), computer-based instruction (CBI), computer managed instruction, computer-based training (CBT), computer-assisted instruction or computer-aided instruction (CAI),[9] internet-based training (IBT), flexible learning, web-based training (WBT), online education, digital educational collaboration, distributed learning, computer-mediated communication, cyber-learning, and multi-modal instruction, virtual education, personal learning environments, networked learning, virtual learning environments (VLE) (which are also called learning platforms), m-learning, and digital education.

Each of these numerous terms has had its advocates, who point up potential distinctive features. However, Moore sees these various terminologies as emphasizing particular features such as digitization approaches, components or delivery methods rather than being fundamentally dissimilar in concept or principle. For example, m-learning emphasizes mobility, which may allow for altered timing, location, accessibility and context of learning;  nevertheless, its purpose and conceptual principles are those of educational technology. In practice, as technology has advanced, the particular "narrowly defined" aspect that was initially emphasized by name has blended into the general field of educational technology.  As a further example, "virtual learning" in a narrowly defined semantic sense implies entering the environmental simulation within a virtual world, for example in treating posttraumatic stress disorder (PTSD). In practice, a "virtual education course" refers to any instructional course in which all, or at least a significant portion, is delivered by the Internet. "Virtual" is used in that broader way to describe a course that is not taught in a classroom face-to-face but through a substitute mode that can conceptually be associated "virtually" with classroom teaching, which means that people do not have to go to the physical classroom to learn. Accordingly, virtual education refers to a form of distance learning in which course content is delivered by various methods such as course management applications, multimedia resources, and videoconferencing.

Bernard Luskin, an educational technology pioneer, advocated that the "e" of e-learning should be interpreted to mean "exciting, energetic, enthusiastic, emotional, extended, excellent, and educational" in addition to "electronic." Parks suggested that the "e" should refer to "everything, everyone, engaging, easy". These broad interpretations focus on new applications and developments, as well as learning theory and media psychology.

History

Educational software

19th century classroom, Auckland
Helping people learn in ways that are easier, faster, surer, or less expensive can be traced back to the emergence of very early tools, such as paintings on cave walls. Various types of abacus have been used. Writing slates and blackboards have been used for at least a millennium. From their introduction, books and pamphlets have held a prominent role in education. From the early twentieth century, duplicating machines such as the mimeograph and Gestetner stencil devices were used to produce short copy runs (typically 10–50 copies) for classroom or home use. The use of media for instructional purposes is generally traced back to the first decade of the 20th century with the introduction of educational films (1900s) and Sidney Pressey's mechanical teaching machines (1920s). The first all multiple choice, large scale assessment was the Army Alpha, used to assess the intelligence and more specifically the aptitudes of World War I military recruits. Further large-scale use of technologies was employed in training soldiers during and after WWII using films and other mediated materials, such as overhead projectors. The concept of hypertext is traced to description of memex by Vannevar Bush in 1945.


Cuisenaire rods
Slide projectors were widely used during the 1950s in educational institutional settings. Cuisenaire rods were devised in the 1920s and saw widespread use from the late 1950s.

In 1960, the University of Illinois initiated a classroom system based in linked computer terminals where students could access informational resources on a particular course while listening to the lectures that were recorded via some form of remotely linked device like a television or audio device.

In the mid 1960s Stanford University psychology professors Patrick Suppes and Richard C. Atkinson experimented with using computers to teach arithmetic and spelling via Teletypes to elementary school students in the Palo Alto Unified School District in California. Stanford's Education Program for Gifted Youth is descended from those early experiments. In 1963, Bernard Luskin installed the first computer in a community college for instruction. Working with Stanford and others he helped develop computer-assisted instruction. Working with the Rand Corporation, Luskin's landmark UCLA dissertation in 1970 analyzed obstacles to computer-assisted instruction.


Artistic portrait of Ivan Illich by Amano1.
In 1971, Ivan Illich published a hugely influential book called, Deschooling Society, in which he envisioned "learning webs" as a model for people to network the learning they needed. The 1970s and 1980s saw notable contributions in computer-based learning by Murray Turoff and Starr Roxanne Hiltz at the New Jersey Institute of Technology as well as developments at the University of Guelph in Canada.[26] In 1976, Bernard Luskin launched Coastline Community College as a "college without walls" using television station KOCE-TV as a vehicle. In the UK the Council for Educational Technology supported the use of educational technology, in particular administering the government's National Development Programme in Computer Aided Learning[27] (1973–77) and the Microelectronics Education Programme (1980–86).

By the mid-1980s, accessing course content became possible at many college libraries. In computer-based training (CBT) or computer-based learning (CBL), the learning interaction was between the student and computer drills or micro-world simulations.

Digitized communication and networking in education started in the mid-1980s. Educational institutions began to take advantage of the new medium by offering distance learning courses using computer networking for information. Early e-learning systems, based on computer-based learning/training often replicated autocratic teaching styles whereby the role of the e-learning system was assumed to be for transferring knowledge, as opposed to systems developed later based on computer supported collaborative learning (CSCL), which encouraged the shared development of knowledge.

Videoconferencing was an important forerunner to the educational technologies known today. This work was especially popular with Museum Education. Even in recent years, videoconferencing has risen in popularity to reach over 20,000 students across the United States and Canada in 2008-2009. Disadvantages of this form of educational technology are readily apparent: image and sound quality is often grainy or pixelated; videoconferencing requires setting up a type of mini-television studio within the museum for broadcast, space becomes an issue; and specialised equipment is required for both the provider and the participant.
The Open University in Britain and the University of British Columbia (where Web CT, now incorporated into Blackboard Inc., was first developed) began a revolution of using the Internet to deliver learning, making heavy use of web-based training, online distance learning and online discussion between students. Practitioners such as Harasim (1995) put heavy emphasis on the use of learning networks.

With the advent of World Wide Web in the 1990s, teachers embarked on the method using emerging technologies to employ multi-object oriented sites, which are text-based online virtual reality systems, to create course websites along with simple sets of instructions for its students.

By 1994, the first online high school had been founded. In 1997, Graziadei described criteria for evaluating products and developing technology-based courses that include being portable, replicable, scalable, affordable, and having a high probability of long-term cost-effectiveness.

Improved Internet functionality enabled new schemes of communication with multimedia or webcams. The National Center for Education Statistics estimate the number of K-12 students enrolled in online distance learning programs increased by 65 percent from 2002 to 2005, with greater flexibility, ease of communication between teacher and student, and quick lecture and assignment feedback.

According to a 2008 study conducted by the U.S Department of Education, during the 2006-2007 academic year about 66% of postsecondary public and private schools participating in student financial aid programs offered some distance learning courses; records show 77% of enrollment in for-credit courses with an online component. In 2008, the Council of Europe passed a statement endorsing e-learning's potential to drive equality and education improvements across the EU.
Today, the prevailing paradigm is computer-mediated communication (CMC), where the primary interaction is between learners and instructors, mediated by the computer. CBT/CBL usually means individualized (self-study) learning, while CMC involves educator/tutor facilitation and requires scenarization of flexible learning activities. In addition, modern ICT provides education with tools for sustaining learning communities and associated knowledge management tasks.

Students growing up in this digital age have extensive exposure to a variety of media. Major high-tech companies such as Google, Verizon, Microsoft are funding schools to provide them the ability to teach their students through technology, which may lead to improved student performance. 

Theory[edit]
Main articles: Educational psychology, E-learning (theory), Learning theory (education) and Educational philosophies
Various pedagogical perspectives or learning theories may be considered in designing and interacting with educational technology. E-learning theory examines these approaches. These theoretical perspectives are grouped into three main theoretical schools or philosophical frameworks: behaviorism, cognitivism and constructivism.

Behaviorism[edit]
This theoretical framework was developed in the early 20th century based on animal learning experiments by Ivan Pavlov, Edward Thorndike, Edward C. Tolman, Clark L. Hull, and B.F. Skinner. Many psychologists used these results to develop theories of human learning, but modern educators generally see behaviorism as one aspect of a holistic synthesis.

B.F. Skinner wrote extensively on improvements of teaching based on his functional analysis of verbal behavior and wrote "The Technology of Teaching", an attempt to dispel the myths underlying contemporary education as well as promote his system he called programmed instruction. Ogden Lindsley developed a learning system, named Celeration, that was based on behavior analysis but that substantially differed from Keller's and Skinner's models.

Cognitivism[edit]
Cognitive science underwent significant change in the 1960s and 1970s. While retaining the empirical framework of behaviorism, cognitive psychology theories look beyond behavior to explain brain-based learning by considering how human memory works to promote learning. The Atkinson-Shiffrin memory model and Baddeley's working memory model were established as theoretical frameworks. Computer Science and Information Technology have had a major influence on Cognitive Science theory. The Cognitive concepts of working memory (formerly known as short term memory) and long term memory have been facilitated by research and technology from the field of Computer Science. Another major influence on the field of Cognitive Science is Noam Chomsky. Today researchers are concentrating on topics like cognitive load, information processing and media psychology. These theoretical perspectives influence instructional design.

Constructivism
Educational psychologists distinguish between several types of constructivism: individual (or psychological) constructivism, such as Piaget's theory of cognitive development, and social constructivism. This form of constructivism has a primary focus on how learners construct their own meaning from new information, as they interact with reality and with other learners who bring different perspectives. Constructivist learning environments require students to use their prior knowledge and experiences to formulate new, related, and/or adaptive concepts in learning (Termos, 2012). Under this framework the role of the teacher becomes that of a facilitator, providing guidance so that learners can construct their own knowledge. Constructivist educators must make sure that the prior learning experiences are appropriate and related to the concepts being taught. Jonassen (1997) suggests "well-structured" learning environments are useful for novice learners and that "ill-structured" environments are only useful for more advanced learners. Educators utilizing a constructivist perspective may emphasize an active learning environment that may incorporate learner centered problem based learning, project-based learning, and inquiry-based learning, ideally involving real-world scenarios, in which students are actively engaged in critical thinking activities. An illustrative discussion and example can be found in the 1980s deployment of constructivist cognitive learning in computer literacy, which involved programming as an instrument of learning.:224 LOGO, a programming language, embodied an attempt to integrate Piagetan ideas with computers and technology. Initially there were broad, hopeful claims, including "perhaps the most controversial claim" that it would "improve general problem-solving skills" across disciplines.:238 However, LOGO programming skills did not consistently yield cognitive benefits.[43]:238 It was "not as concrete" as advocates claimed, it privileged "one form of reasoning over all others," and it was difficult to apply the thinking activity to non-LOGO based activities. By the late 1980s, LOGO and other similar programming languages had lost their novelty and dominance and were gradually de-emphasized amid criticisms,[46] including logocentric related criticisms put forth by a number of postmodern thinkers including Jacques Derrida in his work entitled Writing and Difference (1978).

Practice
Main ar Instructional design
The extent to which e-learning assists or replaces other learning and teaching approaches is variable, ranging on a continuum from none to fully online distance learning. A variety of descriptive terms have been employed (somewhat inconsistently) to categorize the extent to which technology is used. For example, 'hybrid learning' or 'blended learning' may refer to classroom aids and laptops, or may refer to approaches in which traditional classroom time is reduced but not eliminated, and is replaced with some online learning. 'Distributed learning' may describe either the e-learning component of a hybrid approach, or fully online distance learning environments.

Synchronous and asynchronous
E-learning may either be synchronous or asynchronous. Synchronous learning occurs in real-time, with all participants interacting at the same time, while asynchronous learning is self-paced and allows participants to engage in the exchange of ideas or information without the dependency of other participants' involvement at the same time.

Synchronous learning refers to the exchange of ideas and information with one or more participants during the same period. Examples are face-to-face discussion, online real-time live teacher instruction and feedback, Skype conversations, and chat rooms or virtual classrooms where everyone is online and working collaboratively at the same time. Since students are working collaboratively, synchronized learning helps students create an open mind because they have to listen and learn from their peers. Synchronized learning fosters online awareness and improves many students' writing skills.

Asynchronous learning may use technologies such as email, blogs, wikis, and discussion boards, as well as web-supported textbooks, hypertext documents, audio video courses, and social networking using web 2.0. At the professional educational level, training may include virtual operating rooms. Asynchronous learning is beneficial for students who have health problems or who have child care responsibilities. They have the opportunity to complete their work in a low stress environment and within a more flexible time frame. In asynchronous online courses, students proceed at their own pace. If they need to listen to a lecture a second time, or think about a question for a while, they may do so without fearing that they will hold back the rest of the class. Through online courses, students can earn their diplomas more quickly, or repeat failed courses without the embarrassment of being in a class with younger students. Students have access to an incredible variety of enrichment courses in online learning, and can participate in college courses, internships, sports, or work and still graduate with their class.

Linear learning[edit]
Computer-based training (CBT) refers to self-paced learning activities delivered on a computer or handheld device such as a tablet or smartphone. CBT initially delivered content via CD-ROM, and typically presented content linearly, much like reading an online book or manual. For this reason, CBT is often used to teach static processes, such as using software or completing mathematical equations. Computer-based training is conceptually similar to web-based training (WBT) which are delivered via Internet using a web browser.

Assessing learning in a CBT is often by assessments that can be easily scored by a computer such as multiple choice questions, drag-and-drop, radio button, simulation or other interactive means. Assessments are easily scored and recorded via online software, providing immediate end-user feedback and completion status. Users are often able to print completion records in the form of certificates.

CBTs provide learning stimulus beyond traditional learning methodology from textbook, manual, or classroom-based instruction. CBTs can be a good alternative to printed learning materials since rich media, including videos or animations, can be embedded to enhance the learning.

However, CBTs pose some learning challenges. Typically, the creation of effective CBTs requires enormous resources. The software for developing CBTs (such as Flash or Adobe Director) is often more complex than a subject matter expert or teacher is able to use. The lack of human interaction can limit both the type of content that can be presented and the type of assessment that can be performed, and may need supplementation with online discussion or other interactive elements.

Collaborative learning
Computer-supported collaborative learning (CSCL) uses instructional methods designed to encourage or require students to work together on learning tasks. CSCL is similar in concept to the terminology, "e-learning 2.0" and "networked collaborative learning" (NCL).

Collaborative learning is distinguishable from the traditional approach to instruction in which the instructor is the principal source of knowledge and skills. For example, the neologism "e-learning 1.0" refers to the direct transfer method in computer-based learning and training systems (CBL). In contrast to the linear delivery of content, often directly from the instructor's material, CSCL uses blogs, wikis, and cloud-based document portals (such as Google Docs and Dropbox). With technological Web 2.0 advances, sharing information between multiple people in a network has become much easier and use has increased. 1 One of the main reasons for its usage states that it is "a breeding ground for creative and engaging educational endeavors."

Using Web 2.0 social tools in the classroom allows for students and teachers to work collaboratively, discuss ideas, and promote information. According to Sendall (2008), blogs, wikis, and social networking skills are found to be significantly useful in the classroom. After initial instruction on using the tools, students reported an increase in knowledge and comfort level for using Web 2.0 tools. The collaborative tools prepare students with technology skills necessary in today's workforce.

Locus of control remains an important consideration in successful engagement of e-learners. According to the work of Cassandra B. Whyte, the continuing attention to aspects of motivation and success in regard to e-learning should be kept in context and concert with other educational efforts. Information about motivational tendencies can help educators, psychologists, and technologists develop insights to help students perform better academically.
Another type of study aid is collaborative apps that allow students and teachers to interact while studying. An example is MathChat, which allows cooperative problem solving and answer feedback. Some apps can also provide an opportunity to revise or learn new topics independently in a simulated classroom environment. A popular example is Khan Academy, which offers material in math, biology, chemistry, economics, art history and many others. It has the advantage of blending learning styles as the app offers many videos for visual and auditory learners, as well as exercises and tasks to solve for the kinesthetic learners. Other apps are designed after games, which provide a fun way to revise. When the experience is enjoyable the students become more engaged. Games also usually come with a sense of progression, which can help keep students motivated and consistent while trying to improve. Examples of educational games are Dragon Box, Mind Snacks, Code Spells and many more.

Classroom 2.0
Classroom 2.0 refers to online multi-user virtual environments (MUVEs) that connect schools across geographical frontiers. Known as "eTwinning", computer-supported collaborative learning (CSCL) allows learners in one school to communicate with learners in another that they would not get to know otherwise, enhancing educational outcomes and cultural integration. Examples of classroom 2.0 applications are Blogger and Skype.

E-learning 2.0
Main article: Computer-supported collaborative learning
E-learning 2.0 is a type of computer-supported collaborative learning (CSCL) system that developed with the emergence of Web 2.0. From an e-learning 2.0 perspective, conventional e-learning systems were based on instructional packets, which were delivered to students using assignments. Assignments were evaluated by the teacher. In contrast, the new e-learning places increased emphasis on social learning and use of social software such as blogs, wikis, podcasts and virtual worlds such as Second Life. This phenomenon has been referred to as Long Tail Learning

E-learning 2.0, in contrast to e-learning systems not based on CSCL, assumes that knowledge (as meaning and understanding) is socially constructed. Learning takes place through conversations about content and grounded interaction about problems and actions. Advocates of social learning claim that one of the best ways to learn something is to teach it to others.

In addition to virtual classroom environments, social networks have become an important part of E-learning 2.0. Social networks have been used to foster online learning communities around subjects as diverse as test preparation and language education. Mobile Assisted Language Learning (MALL) is the use of handheld computers or cell phones to assist in language learning. Traditional educators may not promote social networking unless they are communicating with their own colleagues.

Virtual Learning Environments (VLEs) and Personal Learning Environments (PLEs) provide an easy to use system for flexibly delivering learning materials, activities and support to students across an institution. For the administrator, a VLE provides a set of tools which allows course content and students to be managed efficiently and provide a single point of integration with student record systems.

Media

A 2.5m teaching slide rule compared to a normal sized model
Educational media and tools can be used for:

task structuring support: help with how to do a task (procedures and processes),
access to knowledge bases (help user find information needed)
alternate forms of knowledge representation (multiple representations of knowledge, e.g. video, audio, text, image, data)
Numerous types of physical technology are currently used: digital cameras, video cameras, interactive whiteboard tools, document cameras, electronic media, and LCD projectors. Combinations of these techniques include blogs, collaborative software, ePortfolios, and virtual classrooms.

Audio and video
Radio offers a synchronous educational vehicle, while streaming audio over the internet with webcasts and podcasts can be asynchronous. Classroom microphones, often wireless, can enable learners and educators to interact more clearly.

Video technology has included VHS tapes and DVDs, as well as on-demand and synchronous methods with digital video via server or web-based options such as streamed video from YouTube, Teacher Tube, Skype, Adobe Connect, and webcams. Telecommuting can connect with speakers and other experts. Interactive digital video games are being used at K-12 and higher education institutions.
Computers, tablets and mobile devices

Teaching and learning online
Collaborative learning is a group-based learning approach in which learners are mutually engaged in a coordinated fashion to achieve a learning goal or complete a learning task. With recent developments in smartphone technology, the processing powers and storage capabilities of modern mobiles allow for advanced development and use of apps. Many app developers and education experts have been exploring smartphone and tablet apps as a medium for collaborative learning.

Computers and tablets enable learners and educators to access websites as well as programs such as Microsoft Word, PowerPoint, PDF files, and images. Many mobile devices support m-learning.

Mobile devices such as clickers and smartphones can be used for interactive audience response feedback. Mobile learning can provide performance support for checking the time, setting reminders, retrieving worksheets, and instruction manuals.

OpenCourseWare (OCW) gives free public access to information used in undergraduate and graduate programs. Participating institutions are MIT and Harvard, Princeton, Stanford, University of Pennsylvania, and University of Michigan.

Social networks
Group webpages, blogs, wikis, and Twitter allow learners and educators to post thoughts, ideas, and comments on a website in an interactive learning environment. Social networking sites are virtual communities for people interested in a particular subject to communicate by voice, chat, instant message, video conference, or blogs. The National School Boards Association found that 96% of students with online access have used social networking technologies, and more than 50% talk online about schoolwork. Social networking encourages collaboration and engagement and can be a motivational tool for self-efficacy amongst students. Every student has his or her own learning requirements, and a Web 2.0  educational  framework  provides  enough resources, learning styles, communication tools and flexibility to accommodate this diversity.

Webcams
Webcams and webcasting have enabled creation of virtual classrooms and virtual learning environment.

Whiteboards
Whiteboards predate tablets and other technological tools, but current interactive whiteboards and smartboards allow learners and instructors to write on the touch screen. The screen markup can be on either a blank whiteboard or any computer screen content. Depending on permission settings, this visual learning can be interactive and participatory, including writing and manipulating images on the interactive whiteboard.

Screencasting
Screencasting allows users to share their screens directly from their browser and make the video available online so that other viewers can stream the video directly.[90] The presenter thus has the ability to show their ideas and flow of thoughts rather than simply explain them as simple text content. In combination with audio and video, the educator can mimic the one-on-one experience of the classroom and deliver clear, complete instructions. Learners have an ability to pause and rewind, to review at their own pace, something a classroom cannot always offer.

Virtual classroom
Main articles: Virtual Learning Environment and MUVE
A virtual learning environment (VLE), also known as a learning platform, simulates a virtual classroom or meetings by simultaneously mixing several communication technologies. For example, web conferencing software such as GoToTraining, WebEx Training or Adobe Connect enables students and instructors to communicate with each other via webcam, microphone, and real-time chatting in a group setting. Participants can raise hands, answer polls or take tests. Students are able to whiteboard and screencast when given rights by the instructor, who sets permission levels for text notes, microphone rights and mouse control.

A virtual classroom provides the opportunity for students to receive direct instruction from a qualified teacher in an interactive environment. Learners can have direct and immediate access to their instructor for instant feedback and direction. The virtual classroom provides a structured schedule of classes, which can be helpful for students who may find the freedom of asynchronous learning to be overwhelming. In addition, the virtual classroom provides a social learning environment that replicates the traditional "brick and mortar" classroom. Most virtual classroom applications provide a recording feature. Each class is recorded and stored on a server, which allows for instant playback of any class over the course of the school year. This can be extremely useful for students to retrieve missed material or review concepts for an upcoming exam. Parents and auditors have the conceptual ability to monitor any classroom to ensure that they are satisfied with the education the learner is receiving.

In higher education especially, a virtual learning environment (VLE) is sometimes combined with a management information system (MIS) to create a managed learning environment, in which all aspects of a course are handled through a consistent user interface throughout the institution. Physical universities and newer online-only colleges offer select academic degrees and certificate programs via the Internet. Some programs require students to attend some campus classes or orientations, but many are delivered completely online. Several universities offer online student support services, such as online advising and registration, e-counseling, online textbook purchases, student governments and student newspapers.

Augmented reality (AR) provides students and teachers the opportunity to create layers of digital information, that includes both virtual world and real world elements, to interact with in real time. There are already a variety of apps which offer a lot of variations and possibilities.

E-learning authoring tools[edit]
E-learning authoring tools are software or online services that enable users to create courses, simulations, or other educational experiences. These tools typically support conventional, presentation-like courses, and may enable screen recording, multimedia, interactivity, quizzes, and non-linear or adaptive approaches.

Learning management system
Main article: Learning management system
A learning management system (LMS) is software used for delivering, tracking and managing training and education. For example, an LMS tracks attendance, time on task, and student progress. Educators can post announcements, grade assignments, check on course activity, and participate in class discussions. Students can submit their work, read and respond to discussion questions, and take quizzes. An LMS may allow teachers, administrators, students, and permitted additional parties (such as parents if appropriate) to track various metrics. LMSs range from systems for managing training/educational records to software for distributing courses over the Internet and offering features for online collaboration. The creation and maintenance of comprehensive learning content requires substantial initial and ongoing investments of human labor. Effective translation into other languages and cultural contexts requires even more investment by knowledgeable personnel.

Internet-based learning management systems include Canvas, Blackboard Inc. and Moodle. These types of LMS allow educators to run a learning system partially or fully online, asynchronously or synchronously. Blackboard can be used for K-12 education, Higher Education, Business, and Government collaboration. Moodle is a free-to-download Open Source Course Management System that provides blended learning opportunities as well as platforms for distance learning courses. Eliademy is a free cloud based Course Management System that provides blended learning opportunities as well as platforms for distance learning courses. e-SchoolPad is a software developed by Avrio Solutions for educational device management, a pioneer of e-learning industry in Asia Pacific.

Learning content management system
A learning content management system (LCMS) is software for author content (courses, reusable content objects). An LCMS may be solely dedicated to producing and publishing content that is hosted on an LMS, or it can host the content itself. The Aviation Industry Computer-Based Training Committee (AICC) specification provides support for content that is hosted separately from the LMS.
A recent trend in LCMSs is to address this issue through crowdsourcing .

Computer-aided assessment
Computer-aided assessment (e-assessment) ranges from automated multiple-choice tests to more sophisticated systems. With some systems, feedback can be geared towards a student's specific mistakes or the computer can navigate the student through a series of questions adapting to what the student appears to have learned or not learned. Formative assessment sifts out the incorrect answers, and these questions are then explained by the teacher. The learner then practices with slight variations of the sifted out questions. The process is completed by summative assessment using a new set of questions that only cover the topics previously taught.

Electronic performance support system
An electronic performance support system (EPSS) is, according to Barry Raybould, "a computer-based system that improves worker productivity by providing on-the-job access to integrated information, advice, and learning experiences". Gloria Gery defines it as "an integrated electronic environment that is available to and easily accessible by each employee and is structured to provide immediate, individualized on-line access to the full range of information, software, guidance, advice and assistance, data, images, tools, and assessment and monitoring systems to permit job performance with minimal support and intervention by others."




0 comments:

Post a Comment