Pages

Saturday, October 31, 2015

Internet World

                        Internet   

                  The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link billions of devices worldwide. It began in California in 1969 and began connecting to networks on other continents in 1988. It is a network of networks ("internet" is short for "inter-networking") that consists of millions of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries an extensive range of information resources and services, such as mobile apps including social media apps, the inter-linked hypertext documents and applications of the World Wide Web (WWW), electronic mail, multiplayer online games, telephony, and peer-to-peer networks for file sharing.Father of internet is called Vint Cerf.
The origins of the Internet date back to research commissioned by the United States government in the 1960s to build robust, fault-tolerant communication via computer networks. The primary precursor network, the ARPANET, initially served as a backbone for interconnection of regional academic and military networks in the 1980s. The funding of a new U.S. backbone by the National Science Foundation in the 1980s, as well as private funding for other commercial backbones, led to worldwide participation in the development of new networking technologies, and the merger of many networks. The linking of international and commercial networks from 1988 on wards marks the beginning of the transition to the modern Internet, and generated a sustained exponential growth as generations of institutional, personal, and mobile computers were connected to the network.

Although the Internet has been widely used by academia, college students and many government approved business since the 1980s, its introduction to the public in the late 1980s and early 1990s incorporated its services and technologies into virtually every aspect of modern human life. As of 2014, 38 percent of the world's human population has used the services of the Internet within the past year over 100 times more people than were using it in 1995.  Internet use grew rapidly in the West from the mid-1990s to early 2000s and from the late 1990s to present in the developing world.
Most traditional communications media, including telephony and television, are being reshaped or redefined by the Internet, giving birth to new services such as Internet telephony and Internet television. Newspaper, book, and other print publishing are adapting to website technology, or are reshaped into blogging and web feeds. The entertainment industry, including music, film, and gaming, was initially the fastest growing online segment. The Internet has enabled and accelerated new forms of human interactions through instant messaging, Internet forums, and social networking. Online shopping has grown exponentially both for major retailers and small artisans and traders. Business-to-business and financial services on the Internet affect supply chains across entire industries.
The Internet has no centralized governance in either technological implementation or policies for access and usage; each constituent network sets its own policies. Only the overreaching definitions of the two principal name spaces in the Internet, the Internet Protocol address space and the Domain Name System (DNS), are directed by a maintainer organization, the Internet Corporation for Assigned Names and Numbers (ICANN). The technical underpinning and standardization of the core protocols is an activity of the Internet Engineering Task Force (IETF), a non-profit organization of loosely affiliated international participants that anyone may associate with by contributing technical expertise.

Terminology
The Internet, referring to the specific global system of interconnected Internet Protocol (IP) networks, is a proper noun and may be written with an initial capital letter. In the media and common use it is often not capitalized, viz. the internet. Some guides specify that the word should be capitalized when used as a noun, but not capitalized when used as an adjective. The Internet is also often referred to as the Net.

Historically the word internetted was used, uncapitalized, as early as 1849 as an adjective meaning "Interconnected; interwoven". The designers of early computer networks used internet both as a noun and as a verb in shorthand form of internetwork or internetworking, meaning interconnecting computer networks.
The terms Internet and World Wide Web are often used interchangeably in everyday speech; it is common to speak of "going on the Internet" when invoking a web browser to view web pages. However, the World Wide Web or the Web is only one of a large number of Internet services. The Web is a collection of interconnected documents (web pages) and other web resources, linked by hyperlinks and URLs. As another point of comparison, Hypertext Transfer Protocol, or HTTP, is the language used on the Web for information transfer, yet it is just one of many languages or protocols that can be used for communication on the Internet. The term Interweb is a portmanteau of Internet and World Wide Web typically used sarcastically to parody a technically unsavvy user.


History  

Research into packet switching started in the early 1960s and packet switched networks such as Mark I at NPL in the UK,  ARPANET, CYCLADES, Merit Network,  Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks.
The first two nodes of what would become the ARPANET were interconnected between Leonard Kleinrock's Network Measurement Center at the University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science and Douglas Engelbart's NLS system at SRI International (SRI) in Menlo Park, California, on 29 October 1969. The third site on the ARPANET was the Culler-Fried Interactive Mathematics Center at the University of California, Santa Barbara, and the fourth was the University of Utah Graphics Department. In an early sign of future growth, there were already fifteen sites connected to the young ARPANET by the end of 1971. These early years were documented in the 1972 film Computer Networks: The Heralds of Resource Sharing.

Early international collaborations on the ARPANET were rare. European developers were concerned with developing the X.25 networks. Notable exceptions were the Norwegian Seismic Array (NORSAR) in June 1973, followed in 1973 by Sweden with satellite links to the Tanum Earth Station and Peter T. Kirstein's research group in the United Kingdom, initially at the Institute of Computer Science, University of London and later at University College London. In December 1974, RFC 675 – Specification of Internet Transmission Control Program, by Vinton Cerf, Yogen Dalal, and Carl Sunshine, used the term internet as a shorthand for internetworking and later RFCs repeat this use. Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In 1982, the Internet Protocol Suite (TCP/IP) was standardized, which permitted worldwide proliferation of interconnected networks. TCP/IP network access expanded again in 1986 when the National Science Foundation Network (NSFNET) provided access to supercomputer sites in the United States from research and education organizations, first at 56 kbit/s and later at 1.5 Mbit/s and 45 Mbit/s. Commercial Internet service providers (ISPs) began to emerge in the late 1980s and early 1990s. The ARPANET was decommissioned in 1990. The Internet was fully commercialized in the U.S. by 1995 when NSFNET was decommissioned, removing the last restrictions on the use of the Internet to carry commercial traffic. The Internet rapidly expanded in Europe and Australia in the mid to late 1980s and to Asia in the late 1980s and early 1990s. The beginning of dedicated transatlantic communication between the NSFNET and networks in Europe began a low-speed satellite relay between Princeton University and Stockholm, Sweden in December of 1988.  Although other network protocols such as UUCP had global reach well before this time, this marked the beginning of the "Internet proper" as an intercontinental network.  Slightly over a year later in March 1990, the first high speed T1 (1.5 mbs) link between the NSFNET and Europe was installed between Cornell University and CERN, allowing much more robust communications than were capable with satellites.  Six months later Tim Berners-Lee would begin writing WorldWideWeb, the first web browser after two years of lobbying CERN management.

Since 1995 the Internet has tremendously impacted culture and commerce, including the rise of near instant communication by email, instant messaging, telephony (Voice over Internet Protocol or VoIP), two-way interactive video calls, and the World Wide Web[37] with its discussion forums, blogs, social networking, and online shopping sites. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1-Gbit/s, 10-Gbit/s, or more.

Worldwide Internet users   2005 2010 2014a
World population 6.5 billion 6.9 billion 7.2 billion
Not using the Internet 84% 70% 60%
Using the Internet 16% 30% 40%
Users in the developing world 8% 21% 32%
Users in the developed world 51% 67% 78


 
The Internet continues to grow, driven by ever greater amounts of online information and knowledge, commerce, entertainment and social networking. During the late 1990s, it was estimated that traffic on the public Internet grew by 100 percent per year, while the mean annual growth in the number of Internet users was thought to be between 20% and 50%.  This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network.  As of 31 March 2011, the estimated total number of Internet users was 2.095 billion (30.2% of world population). It is estimated that in 1993 the Internet carried only 1% of the information flowing through two-way telecommunication, by 2000 this figure had grown to 51%, and by 2007 more than 97% of all telecommunicated information was carried over the Internet.


Governance

The Internet is a globally distributed network comprising many voluntarily interconnected
autonomous networks. It operates without a central governing body. The technical underpinning and standardization of the core protocols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a non-profit organization of loosely affiliated international participants that anyone may associate with by contributing technical expertise.
To maintain interoperability, the principal name spaces of the Internet are administered by the Internet Corporation for Assigned Names and Numbers (ICANN), headquartered in the neighborhood of Playa Vista, in Los Angeles, California. ICANN is the authority that coordinates the assignment of unique identifiers for use on the Internet, including domain names, Internet Protocol (IP) addresses, application port numbers in the transport protocols, and many other parameters. Globally unified name spaces, in which names and numbers are uniquely assigned, are essential for maintaining the global reach of the Internet. ICANN is governed by an international board of directors drawn from across the Internet technical, business, academic, and other non-commercial communities. ICANN's role in coordinating the assignment of unique identifiers distinguishes it as perhaps the only central coordinating body for the global Internet.
Regional Internet Registries (RIRs) allocate IP addresses:

1. African Network Information Center (AfriNIC) for Africa
2. American Registry for Internet Numbers (ARIN) for North America
3. Asia-Pacific Network Information Centre (APNIC) for Asia and the Pacific region
4. Latin American and Caribbean Internet Addresses Registry (LACNIC) for Latin America and the Caribbean region
5. Reseaux IP Europeans - Network Coordination Centre (RIPE NCC) for Europe, the Middle East, and Central Asia

6. The National Telecommunications and Information Administration, an agency of the United States Department of Commerce, continues to have final approval over changes to the DNS root zone.

The Internet Society (ISOC) was founded in 1992 with a mission to "assure the open development, evolution and use of the Internet for the benefit of all people throughout the world".[49] Its members include individuals (anyone may join) as well as corporations, organizations, governments, and universities. Among other activities ISOC provides an administrative home for a number of less formally organized groups that are involved in developing and managing the Internet, including: the Internet Engineering Task Force (IETF), Internet Architecture Board (IAB), Internet Engineering Steering Group (IESG), Internet Research Task Force (IRTF), and Internet Research Steering Group (IRSG). On 16 November 2005, the United Nations-sponsored World Summit on the Information Society in Tunis established the Internet Governance Forum (IGF) to discuss Internet-related issues.
Access
Common methods of Internet access by users include dial-up with a computer modem via telephone circuits, broadband over coaxial cable, fiber optic or copper wires, Wi-Fi, satellite and cellular telephone technology (3G, 4G). The Internet may often be accessed from computers in libraries and Internet cafes. Internet access points exist in many public places such as airport halls and coffee shops. Various terms are used, such as public Internet kiosk, public access terminal, and Web payphone. Many hotels also have public terminals, though these are usually fee-based. These terminals are widely accessed for various usages, such as ticket booking, bank deposit, or online payment. Wi-Fi provides wireless access to the Internet via local computer networks. Hotspots providing such access include Wi-Fi cafes, where users need to bring their own wireless devices such as a laptop or PDA. These services may be free to all, free to customers only, or fee-based.
Grassroots efforts have led to wireless community networks. Commercial Wi-Fi services covering large city areas are in place in London, Vienna, Toronto, San Francisco, Philadelphia, Chicago and Pittsburgh. The Internet can then be accessed from such places as a park bench. Apart from Wi-Fi, there have been experiments with proprietary mobile wireless networks like Ricochet, various high-speed data services over cellular phone networks, and fixed wireless services. High-end mobile phones such as Smartphone's in general come with Internet access through the phone network. Web browsers such as Opera are available on these advanced handsets, which can also run a wide variety of other Internet software. More mobile phones have Internet access than PCs, though this is not as widely used. An Internet access provider and protocol matrix differentiates the methods used to get online.

Protocols

While the hardware components in the Internet infrastructure can often be used to support other software systems, it is the design and the standardization process of the software that characterizes the Internet and provides the foundation for its scalability and success. The responsibility for the architectural design of the Internet software systems has been assumed by the Internet Engineering Task Force (IETF). The IETF conducts standard-setting work groups, open to any individual, about the various aspects of Internet architecture. Resulting contributions and standards are published as Request for Comments (RFC) documents on the IETF web site.
The principal methods of networking that enable the Internet are contained in specially designated RFCs that constitute the Internet Standards. Other less rigorous documents are simply informative, experimental, or historical, or document the best current practices (BCP) when implementing Internet technologies.
The Internet standards describe a framework known as the Internet protocol suite. This is a model architecture that divides methods into a layered system of protocols, originally documented in RFC 1122 and RFC 1123. The layers correspond to the environment or scope in which their services operate. At the top is the application layer, the space for the application-specific networking methods used in software applications. For example, a web browser program uses the client-server application model and a specific protocol of interaction between servers and clients, while many file-sharing systems use a peer-to-peer paradigm. Below this top layer, the transport layer connects applications on different hosts with a logical channel through the network with appropriate data exchange methods.
Underlying these layers are the networking technologies that interconnect networks at their borders and hosts via the physical connections. The Internet layer enables computers to identify and locate each other via Internet Protocol (IP) addresses, and routes their traffic via intermediate (transit) networks. Last, at the bottom of the architecture is the link layer, which provides connectivity between hosts on the same network link, such as a physical connection in form of a local area network (LAN) or a dial-up connection. The model, also known as TCP/IP, is designed to be independent of the underlying hardware, which the model therefore does not concern itself with in any detail. Other models have been developed, such as the OSI model that attempt to be comprehensive in every aspect of communications. While many similarities exist between the models, they are not compatible in the details of description or implementation; indeed, TCP/IP protocols are usually included in the discussion of OSI networking.
As user data is processed through the protocol stack, each abstraction layer adds encapsulation information at the sending host. Data is transmitted over the wire at the link level between hosts and routers. Encapsulation is removed by the receiving host. Intermediate relays update link encapsulation at each hop, and inspect the IP layer for routing purposes.

The most prominent component of the Internet model is the Internet Protocol (IP), which provides addressing systems (IP addresses) for computers on the Internet. IP enables internetworking and in essence establishes the Internet itself. Internet Protocol Version 4 (IPv4) is the initial version used on the first generation of the Internet and is still in dominant use. It was designed to address up to 4.3 billion (109) Internet hosts. However, the explosive growth of the Internet has led to IPv4 address exhaustion, which entered its final stage in 2011,  when the global address allocation pool was exhausted. A new protocol version, IPv6, was developed in the mid-1990s, which provides vastly larger addressing capabilities and more efficient routing of Internet traffic. IPv6 is currently in growing deployment around the world, since Internet address registries (RIRs) began to urge all resource managers to plan rapid adoption and conversion.
IPv6 is not directly interoperable by design with IPv4. In essence, it establishes a parallel version of the Internet not directly accessible with IPv4 software. This means software upgrades or translator facilities are necessary for networking devices that need to communicate on both networks. Essentially all modern computer operating systems support both versions of the Internet Protocol. Network infrastructure, however, is still lagging in this development. Aside from the complex array of physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-lateral commercial contracts, e.g., peering agreements, and by technical specifications or protocols that describe how to exchange data over the network. Indeed, the Internet is defined by its interconnections and routing policies.

Services

The Internet carries many network services, most prominently mobile apps such as social media apps, the World Wide Web, electronic mail, multiplayer online games, Internet telephony, and file sharing services.

World Wide Web

This NeXT Computer was used by Tim Berners-Lee at CERN and became the world's first Web server. Many people use the terms Internet and World Wide Web, or just the Web, interchangeably, but the two terms are not synonymous. The World Wide Web is the primary application that billions of people use on the Internet, and it has changed their lives immeasurably. However, the Internet provides many other services. The Web is a global set of documents, images and other resources, logically interrelated by hyperlinks and referenced with Uniform Resource Identifiers (URIs). URIs symbolically identifies services, servers, and other databases, and the documents and resources that they can provide. Hypertext Transfer Protocol (HTTP) is the main access protocol of the World Wide Web. Web services also use HTTP to allow software systems to communicate in order to share and exchange business logic and data.

World Wide Web browser software, such as Microsoft's Internet Explorer, Mozilla Firefox, Opera, Apple's Safari, and Google Chrome, lets users navigate from one web page to another via hyperlinks embedded in the documents. These documents may also contain any combination of computer data, including graphics, sounds, text, video, multimedia and interactive content that runs while the user is interacting with the page. Client-side software can include animations, games, office applications and scientific demonstrations. Through keyword-driven Internet research using search engines like Yahoo! and Google, users worldwide have easy, instant access to a vast and diverse amount of online information. Compared to printed media, books, encyclopedias and traditional libraries, the World Wide Web has enabled the decentralization of information on a large scale.
The Web has also enabled individuals and organizations to publish ideas and information to a potentially large audience online at greatly reduced expense and time delay. Publishing a web page, a blog, or building a website involves little initial cost and many cost-free services are available. However, publishing and maintaining large, professional web sites with attractive, diverse and up-to-date information is still a difficult and expensive proposition. Many individuals and some companies and groups use web logs or blogs, which are largely used as easily updatable online diaries. Some commercial organizations encourage staff to communicate advice in their areas of specialization in the hope that visitors will be impressed by the expert knowledge and free information, and be attracted to the corporation as a result.
One example of this practice is Microsoft, whose product developers publish their personal blogs in order to pique the public's interest in their work.[original research? Collections of personal web pages published by large service providers remain popular, and have become increasingly sophisticated. Whereas operations such as Angelfire and GeoCities have existed since the early days of the Web, newer offerings from, for example, Facebook and Twitter currently have large followings. These operations often brand themselves as social network services rather than simply as web page hosts.
When the Web developed in the 1990s, a typical web page was stored in completed form on a web server, formatted in HTML, complete for transmission to a web browser in response to a request. Over time, the process of creating and serving web pages has become dynamic, creating flexible design, layout, and content. Websites are often created using content management software with, initially, very little content. Contributors to these systems, who may be paid staff, members of an organization or the public, fill underlying databases with content using editing pages designed for that purpose, while casual visitors view and read this content in HTML form. There may or may not be editorial, approval and security systems built into the process of taking newly entered content and making it available to the target visitors.

Communication

Email is an important communications service available on the Internet. The concept of sending electronic text messages between parties in a way analogous to mailing letters or memos predates the creation of the Internet. Pictures, documents and other files are sent as email attachments. Emails can be cc-ed to multiple email addresses. Internet telephony is another common communications service made possible by the creation of the Internet. VoIP stands for Voice-over-Internet Protocol, referring to the protocol that underlies all Internet communication. The idea began in the early 1990s with walkie-talkie-like voice applications for personal computers. In recent years many VoIP systems have become as easy to use and as convenient as a normal telephone. The benefit is that, as the Internet carries the voice traffic, VoIP can be free or cost much less than a traditional telephone call, especially over long distances and especially for those with always-on Internet connections such as cable or ADSL. VoIP is maturing into a competitive alternative to traditional telephone service. Interoperability between different providers has improved and the ability to call or receive a call from a traditional telephone is available. Simple, inexpensive VoIP network adapters are available that eliminate the need for a personal computer.
Voice quality can still vary from call to call, but is often equal to and can even exceed that of traditional calls. Remaining problems for VoIP include emergency telephone number dialing and reliability. Currently, a few VoIP providers provide an emergency service, but it is not universally available. Older traditional phones with no "extra features" may be line-powered only and operate during a power failure; VoIP can never do so without a backup power source for the phone equipment and the Internet access devices. VoIP has also become increasingly popular for gaming applications, as a form of communication between players. Popular VoIP clients for gaming include Ventrilo and Teamspeak. Modern video game consoles also offer VoIP chat features.

Data transfer

File sharing is an example of transferring large amounts of data across the Internet. A computer file can be emailed to customers, colleagues and friends as an attachment. It can be uploaded to a website or File Transfer Protocol (FTP) server for easy download by others. It can be put into a "shared location" or onto a file server for instant use by colleagues. The load of bulk downloads too many users can be eased by the use of "mirror" servers or peer-to-peer networks. In any of these cases, access to the file may be controlled by user authentication, the transit of the file over the Internet may be obscured by encryption, and money may change hands for access to the file. The price can be paid by the remote charging of funds from, for example, a credit card whose details are also passed usually fully encrypted across the Internet. The origin and authenticity of the file received may be checked by digital signatures or by MD5 or other message digests. These simple features of the Internet, over a worldwide basis, are changing the production, sale, and distribution of anything that can be reduced to a computer file for transmission. This includes all manner of print publications, software products, news, music, film, video, photography, graphics and the other arts. This in turn has caused seismic shifts in each of the existing industries that previously controlled the production and distribution of these products.
Streaming media is the real-time delivery of digital media for the immediate consumption or enjoyment by end users. Many radio and television broadcasters provide Internet feeds of their live audio and video productions. They may also allow time-shift viewing or listening such as Preview, Classic Clips and Listen Again features. These providers have been joined by a range of pure Internet "broadcasters" who never had on-air licenses. This means that an Internet-connected device, such as a computer or something more specific, can be used to access on-line media in much the same way as was previously possible only with a television or radio receiver. The range of available types of content is much wider, from specialized technical webcasts to on-demand popular multimedia services. Podcasting is a variation on this theme, where usually audio material is downloaded and played back on a computer or shifted to a portable media player to be listened to on the move. These techniques using simple equipment allow anybody, with little censorship or licensing control, to broadcast audio-visual material worldwide.  Digital media streaming increases the demand for network bandwidth. For example, standard image quality needs 1 Mbit/s link speed for SD 480p, HD 720p quality requires 2.5 Mbit/s, and the top-of-the-line HDX quality needs 4.5 Mbit/s for 1080p.
Webcams are a low-cost extension of this phenomenon. While some webcams can give full-frame-rate video, the picture either is usually small or updates slowly. Internet users can watch animals around an African waterhole, ships in the Panama Canal, traffic at a local roundabout or monitor their own premises, live and in real time. Video chat rooms and video conferencing are also popular with many uses being found for personal webcams, with and without two-way sound. YouTube was founded on 15 February 2005 and is now the leading website for free streaming video with a vast number of users. It uses a flash-based web player to stream and show video files. Registered users may upload an unlimited amount of video and build their own personal profile. YouTube claims that its users watch hundreds of millions, and upload hundreds of thousands of videos daily. Currently, YouTube also uses an HTML5 player.

Security

Many computer scientists describe the Internet as a "prime example of a large-scale, highly engineered, yet highly complex system". The structure was found to be highly robust to random failures, yet, very vulnerable to intentional attacks. The Internet structure and its usage characteristics have been studied extensively and the possibility of developing alternative structures has been investigated.
Internet resources, hardware, and software components are the target of malicious attempts to gain unauthorized control to cause interruptions, or access private information. Such attempts include computer viruses which copy with the help of humans, computer worms which copy themselves automatically, denial of service attacks, ransom-ware, botnets, and spyware that reports on the activity and typing of users. Usually these activities constitute cybercrime. Defense theorists have also speculated about the possibilities of cyber warfare using similar methods on a large scale.




















0 comments:

Post a Comment